Các dạng toán phương trình lượng giác, phương thức giải và bài tập trường đoản cú cơ phiên bản đến cải thiện - toán lớp 11

Sau khi có tác dụng quen với những hàm lượng giác thì các dạng bài tập về phương trình lượng giác đó là nội dung tiếp sau mà các em vẫn học trong công tác toán lớp 11.

Bạn đang xem: Giải phương trình lượng giác


Vậy phương trình lượng giác có các dạng toán nào, phương thức giải ra sao? họ cùng khám phá qua nội dung bài viết này, đồng thời áp dụng các phương thức giải này để gia công các bài tập từ cơ bản đến nâng cao về phương trình lượng giác.

I. định hướng về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là 1 cung thỏa sinα = a, lúc đó phương trình (1) có những nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α thỏa mãn điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Lúc đó các nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có các nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là một trong những cung thỏa cosα = a, lúc đó phương trình (2) có các nghiệm là:

 x = ±α + k2π, ()

- Nếu α vừa lòng điều khiếu nại 0 ≤ α ≤ π cùng cosα = a thì ta viết α = arccosa. Lúc đó những nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có những nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay đk của phương trình (3) là: 

*

- Nếu α vừa lòng điều kiện

*

- Nếu α thỏa mãn nhu cầu điều khiếu nại

*

II. Các dạng toán về Phương trình lượng giác và cách thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng các công thức nghiệm tương ứng với từng phương trình.

* ví dụ 1 (Bài 1 trang 28 SGK Đại số và Giải tích 11): Giải những phương trình sau:

a) b)

b)

d)

*

* lời giải bài 1 trang 28 SGK Đại số với Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* lấy ví dụ như 2: Giải các phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một trong những phương trình lượng giác chuyển được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng những công thức biến đổi để mang về phương trình lượng giác đã mang đến về phương trình cơ bạn dạng như Dạng 1.

* ví dụ như 1: Giải các phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ cùng với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* lưu lại ý: Bài toán trên vận dụng công thức:

 

*
*

 

*
*

* lấy một ví dụ 2: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* giữ ý: bài xích toán áp dụng công thức đổi khác tích thành tổng:

 

*

 

*

 

*

* lấy một ví dụ 3: Giải các phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu lại ý: Bài toán bên trên có vận dụng công thức đổi khác tổng các kết quả và phương pháp nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình bậc nhất có một hàm số lượng giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* ví dụ như 1: Giải những phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai có một hàm con số giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta gồm phương trình at2 + bt + c = 0.

* lưu giữ ý: Khi đặt t=sinx (hoặc t=cosx) thì phải có điều kiện: -1≤t≤1

* lấy ví dụ như 1: Giải các phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 đề xuất loại

*
*
 
*

* Chú ý: Đối cùng với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Phương thức giải như sau:

 - Ta có: cosx = 0 chưa hẳn là nghiệm của phương trình bởi a≠0,

 Chia 2 vế cho cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 với tanx)

 - giả dụ phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta ráng d = d.sin2x + d.cos2x, cùng rút gọn đem lại dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ giải pháp 1: Chia nhì vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ giải pháp 2: Sử dụng công thức sinx với cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 đối với t.

* lưu lại ý: PT: asinx + bcosx = c, (a≠0,b≠0) tất cả nghiệm khi c2 ≤ a2 + b2

• Dạng tổng thể của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu ý: bài bác toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng cùng với sinx và cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Bộ 7 Đề Thi Học Kì 1 Lớp 7 Môn Địa Lí Năm 2020, Đề Kiểm Tra Học Kì 1 Môn Địa Lí 7 Năm Học 2019

* Phương pháp

- Đặt t = sinx + cosx, lúc đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu ý: 

*
 nên điều kiện của t là: 

- do đó sau khi kiếm được nghiệm của PT (*) nên kiểm tra (đối chiếu) lại điều kiện của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 chưa hẳn là PT dạng đối xứng dẫu vậy cũng có thể giải bằng phương pháp tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải các phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ cùng với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài bác tập về các dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số cùng Giải tích 11): Với phần đông giá trị như thế nào của x thì giá chỉ trị của các hàm số y = sin 3x cùng y = sin x bằng nhau?

° lời giải bài 2 trang 28 SGK Đại số với Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài xích 3 (trang 28 SGK Đại số 11): Giải các phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải mã bài 3 trang 28 SGK Đại số với Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT gồm nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT tất cả nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số cùng Giải tích 11): Giải phương trình 

° giải thuật bài 3 trang 28 SGK Đại số với Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến phía trên ta cần so sánh với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT tất cả họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số với Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải thuật bài 1 trang 36 SGK Đại số và Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT tất cả tập nghiệm 

*

* bài bác 2 (trang 36 SGK Đại số cùng Giải tích 11): Giải những phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° lời giải bài 2 trang 36 SGK Đại số cùng Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc ấy PT (1) trở thành: 2t2 – 3t + 1 = 0